Read Anywhere and on Any Device!

Special Offer | $0.00

Join Today And Start a 30-Day Free Trial and Get Exclusive Member Benefits to Access Millions Books for Free!

Read Anywhere and on Any Device!

  • Download on iOS
  • Download on Android
  • Download on iOS

Advanced Algorithms for Neural Networks: A C++ Sourcebook

Timothy Masters
4.9/5 (28169 ratings)
Description:A valuable working resource for anyone who uses neural networks to solve real-world problemsThis practical guide contains a wide variety of state-of-the-art algorithms that are useful in the design and implementation of neural networks. All algorithms are presented on both an intuitive and a theoretical level, with complete source code provided on an accompanying disk. Several training algorithms for multiple-layer feedforward networks (MLFN) are featured. The probabilistic neural network is extended to allow separate sigmas for each variable, and even separate sigma vectors for each class. The generalized regression neural network is similarly extended, and a fast second-order training algorithm for all of these models is provided. The book also discusses the recently developed Gram-Charlier neural network and provides important information on its strengths and weaknesses. Readers are shown several proven methods for reducing the dimensionality of the input data.Advanced Algorithms for Neural Networks also covers: Advanced multiple-sigma PNN and GRNN training, including conjugate-gradient optimization based on cross validation The Levenberg-Marquardt training algorithm for multiple-layer feedforward networks Advanced stochastic optimization, including Cauchy simulated annealing and stochastic smoothing Data reduction and orthogonalization via principal components and discriminant functions Economical yet powerful validation techniques, including the jackknife, the bootstrap, and cross validation Includes a complete state-of-the-art PNN/GRNN program, with both source and executable codeWe have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Advanced Algorithms for Neural Networks: A C++ Sourcebook. To get started finding Advanced Algorithms for Neural Networks: A C++ Sourcebook, you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
0471105880

Advanced Algorithms for Neural Networks: A C++ Sourcebook

Timothy Masters
4.4/5 (1290744 ratings)
Description: A valuable working resource for anyone who uses neural networks to solve real-world problemsThis practical guide contains a wide variety of state-of-the-art algorithms that are useful in the design and implementation of neural networks. All algorithms are presented on both an intuitive and a theoretical level, with complete source code provided on an accompanying disk. Several training algorithms for multiple-layer feedforward networks (MLFN) are featured. The probabilistic neural network is extended to allow separate sigmas for each variable, and even separate sigma vectors for each class. The generalized regression neural network is similarly extended, and a fast second-order training algorithm for all of these models is provided. The book also discusses the recently developed Gram-Charlier neural network and provides important information on its strengths and weaknesses. Readers are shown several proven methods for reducing the dimensionality of the input data.Advanced Algorithms for Neural Networks also covers: Advanced multiple-sigma PNN and GRNN training, including conjugate-gradient optimization based on cross validation The Levenberg-Marquardt training algorithm for multiple-layer feedforward networks Advanced stochastic optimization, including Cauchy simulated annealing and stochastic smoothing Data reduction and orthogonalization via principal components and discriminant functions Economical yet powerful validation techniques, including the jackknife, the bootstrap, and cross validation Includes a complete state-of-the-art PNN/GRNN program, with both source and executable codeWe have made it easy for you to find a PDF Ebooks without any digging. And by having access to our ebooks online or by storing it on your computer, you have convenient answers with Advanced Algorithms for Neural Networks: A C++ Sourcebook. To get started finding Advanced Algorithms for Neural Networks: A C++ Sourcebook, you are right to find our website which has a comprehensive collection of manuals listed.
Our library is the biggest of these that have literally hundreds of thousands of different products represented.
Pages
Format
PDF, EPUB & Kindle Edition
Publisher
Release
ISBN
0471105880

More Books

loader